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Abstract

Sandwich structures are extensively used in engineering because of their high specific stiffness and
strength. The modelling of sandwich structures has been studied extensively, but less attention has been
paid to their material identification. This paper proposes an inverse method for the material identification
of sandwich beams by measured flexural resonance frequencies. The procedure is illustrated with
numerically generated test data and also applied on experimentally measured data taken out of literature.
An error estimation procedure is conducted to discover and discuss the main error sources.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Sandwich structures are popular in engineering applications as load-carrying structural
members because of their high stiffness and strength-to-weight ratios, good fatigue properties,
good thermal and acoustical insulation and ease of mass production [1,2]. The discussion in this
paper is limited to sandwich structures, which are defined as three-layer structures consisting of
two thin sheets of high-strength material between which a layer of low average strength and
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

At;Ab;Ac area of the cross-section of three
layers

b the width of sandwich elements
Et;Eb Young’s modulus of the top and

bottom face sheet
Eeq;Geq the equivalent Young’s modulus and

equivalent elastic shear modulus of the
sandwich beam

EBE the equivalent Young’s modulus of the
sandwich beam from free–free Euler
beam formulas

Ef the Young’s modulus of the two iden-
tical face sheets ðEf ¼ Et ¼ EbÞ

f n exp the experimentally measured nth fre-
quency

f i exp; Zi exp the ith experimentally measured fre-
quency and loss factor

f ical; Zical the ith calculated frequency and loss
factor

Gc the elastic shear modulus of the core
hf the thickness of the two identical face

sheet ðhf ¼ ht ¼ hbÞ

hb; ht; hc the thickness of the bottom face sheet,
top face sheet and the core, respectively

i the node of sandwich beam elements
I t; Ib moment of inertia of the top and

bottom face sheet
j the node of sandwich beam elements
Ksp the shape factor (also called the shear

correction factor)
L the length of the sandwich beams
Le length of sandwich elements
Nw;Nt;Nb;Nuc;Ngc shape function of the

transverse displacement of sandwich
beam, the axial displacement of the
top face sheet, bottom face sheet and
the core, the shear strain of the core

t the total thickness of the sandwich
beam, t ¼ hc þ ht þ hb

u
ðeÞ
ti ; u

ðeÞ
tj the axial displacement of top face sheet

at node i, j

u
ðeÞ
bi ; u

ðeÞ
bj the axial displacement of bottom face

sheet at node i, j

uc the axial displacement of the core
Up potential energy of the sandwich beams
Uk kinetic energy of the sandwich beams
fU ðeÞg local nodal displacement vector
w
ðeÞ
i ;w

ðeÞ
j the transverse displacement of sandwich

elements at node i, j

wn the measured nth circular frequency
ð2pf nÞ of sandwich beam

wnf the nth circular frequency of the face
sheet

x the axial coordinates
e tolerance in the identification iteration
g the shear strain of the core
Zn the measured nth modal loss factor of

the sandwich beam
Zc the loss factor of the core
yðeÞi ; y

ðeÞ
j the rotation of sandwich elements at

node i, j

rt;rb;rcdensity of the cross-section of three
layers

r the equivalent density of the sandwich
beam

rf the density of the two identical face
sheets ðrf ¼ rt ¼ rbÞ

Superscript

e related to sandwich elements
0 partial differentiation with respect to x

Subscript

b related to bottom face sheet
c related to core
e related to sandwich element
f related to the face sheet
i, j related to node i and j

n the nth modal parameters
t related to top face sheet
u related to axial displacement
w related to transverse displacement
g related to shear strain of the core
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density is sandwiched. Depending upon different conditions, the face sheets material can be
aluminium alloys [3,4], fibre-reinforced plastics [5–7] or heat-resistant steel [8]. Both the material
and geometrical shape of the core can vary widely. Very popular types of core are honeycomb
core [3–5], corrugated core [9], foam [6,52], and viscoelastic polymer core [10–13]. Face sheets are
typically bounded to the core with an adhesive. They carry most of the bending and in-plane
loads. The function of the core is twofold. First, the core keeps the faces separated and stabilizes
them. Secondly, the core contributes to the flexural stiffness, out-of-plane shear and compressive
strength. The performance of sandwich structures depends mainly on the following factors: (1) the
properties of the skin; (2) the core properties; (3) the properties of the used adhesive; (4) the
geometrical shape and dimensions of the core.
An important issue in sandwich structures is the knowledge of the values of the material

parameters. This is essential for the quality of the model and for eventual static or dynamical
analysis. In the appendix of Plantema’s book [1], the bending stiffness, shear stiffness, twisting
stiffness and Poisson’s ratio are determined experimentally by static tests. The Young’s modulus,
shear modulus and Poisson’s ratio could be derived from relatively simple formulas. In Ref. [14],
the bending stiffness of a CFRP skin/foam core sandwich beam is evaluated by a three-point
bending (TPB) test. A block shear test (BST) procedure is described in ASTM C 273-61 [15], a
TPB test procedure is described in ASTM C 273-61 [16]. Both methods are compared in Ref. [17].
All the above methods are based on static testing and can be classified as destructive evaluation

methods. A measurement technique for the estimation of the core shear strain in completely
enclosed sandwich structures by using delta rosette strain gauge configuration is presented in Ref.
[3]. In Ref. [4], aluminium honeycomb sandwich beams are regarded as orthotropic Timoshenko
beams. An equivalent Young’s modulus and shear modulus are identified from measured flexural
resonance frequencies. This can be considered as a non-destructive evaluation (NDE) method, but
the material parameters of the face sheets and the core are not considered separately. Wanner and
Kromp [18] used five flexural frequencies of beam specimens to identify Young’s modulus and the
shear modulus based on approximate Timoshenko beam formulas. In 1999, Lins et al. [19] built a
new equipment to identify G at up to a temperature of 2000 1C. The methods in Refs. [18,19] are
limited to beams with homogeneous cross-section. The ASME standard [20] proposes a procedure
to determine material parameters from test beams, but unfortunately, it is only suitable for
isotropic material with an assumed relation between Young’s modulus, Poisson’s ratio and the
shear modulus.
Material parameter identification by inverse methods using measured resonance frequencies is a

recent type of NDE method. The principle of inverse methods for material identification is to
update iteratively the engineering constants in a finite element model of the test specimens in such
a way that the computed frequencies match the measured frequencies (see Fig. 1).
The engineering constants that minimize an output residual are considered as the solution of

the procedure. The minimization of the output residual is realized by optimization methods,
which minimize a scalar value called ‘‘the objective function’’. A typical objective function is the
sum of the squared residual components.
The underlying idea of inverse methods based on measurement of resonance frequencies

originates from the observation that all constructions made with elastic materials have a
characteristic set of resonance frequencies. The values of these frequencies are determined by the
geometry, boundary conditions, the elastic moduli and the density of the used materials. Thus,
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Fig. 1. The principle of an inverse method.
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inversely, these resonance frequencies can be used as tools to determine the elastic moduli if the
geometry, boundary conditions and the density are assumed to be known.
A lot of research work has been reported in literature about estimation of the material

properties of homogeneous beams, plates and simple shells using inverse methods. For thin plates,
De Wilde and Sol [21,22], Sol [23] Deobald [24], Deobald and Gibson [25], Frederiksen [26],
Moussu and Nivoit [27], and Lai and Ip [28] studied material parameter identification based on
Kirchhoff’s thin plate theory. For thick plates, in order to include the influence of the transverse
shear modulus, Hua [29], Frederiksen [30], Marchand and Authesserre [31], Grédiac and Paris
[32], Wang and Kam [33], Shun-Fa Hwang and Chao-Shui Chang [34], Rikards and Chate [35],
and Liu et al. [36] investigated material parameter identification based on first-order shear theory
(Mindlin plate model) or higher order shear theory. Garne and Martinez [37] studied material
parameter identification from the resonance frequencies of shell structures.
In spite of the many applications of sandwich structures, not many researches to identify

material properties are conducted based on inverse methods. The goal of this paper is to find a
convenient, accurate, simple and NDE minded inverse method to identify material parameters.
The Young’s modulus of face sheets and shear modulus of core calculated from formulas based

on simple Timoshenko beam theory are used as initial values. The used finite element model is
based on sandwich beam theory and the Nelder–Mead (NM) Simplex optimization method is
selected as optimization algorithm. Some numerical examples and experiments from literatures
are used to illustrate and validate the proposed method. An error estimation is conducted at
the end.
2. Material parameter identification by an inverse method

In order to identify material parameters of sandwich beams by an inverse method, several items
must be selected: an accurate numerical model, good initial values, a suitable objective function
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and a performing optimization programme. The following paragraphs will describe these items
one by one in some detail.
2.1. The finite element model

Fig. 2 presents a sandwich beam element. A list of symbols used in the context is given in
Nomenclature. The proposed finite element model is developed based on the following
assumptions: (1) the shear stresses in the two face sheets and longitudinal normal stresses in
the core are negligible; (2) the shear strain is linearized across the depth of the core; (3) the
transverse displacement is the same for all the three layers; (4) there is no slipping between the face
sheet and the core at their interface; (5) the core is elastic or linearly viscoelastic, with a shear
modulus Gc or Gc�ð1þ i�ZcÞ, where i ¼

ffiffiffiffiffiffiffi
�1
p

. The face sheets are elastic or linearly viscoelastic,
with a Young’s modulus Ef or Ef �ð1þ i�Zf Þ, where i ¼

ffiffiffiffiffiffiffi
�1
p

. (6) Density and thickness are
uniform over the sandwich beam; (7) the two face sheets are identical.
The sandwich beam finite element model is derived based only on the assumption (1)–(6). For

simplicity, assumption (7) is added during the identification process.
The column of nodal displacements becomes:

fU ðeÞg ¼ ½w
ðeÞ
i yðeÞi u

ðeÞ
ti u

ðeÞ
bi w

ðeÞ
j yðeÞj u

ðeÞ
tj u

ðeÞ
bj �

T. (1)

The transverse displacement of the sandwich beam and the axial displacements of the two face
sheets are expressed in function of the nodal displacements by finite element shape functions:

w ¼ ½Nw�fU
ðeÞg; ut ¼ ½Nt�fU

ðeÞg; ub ¼ ½Nb�fU
ðeÞg, (2)

where the shape functions are given by

½Nw� ¼ b1� 3x2 þ 2x3 ðx� 2x2 þ x3ÞLe 0 0 3x2 � 2x3 ð�x2 þ x3ÞLe 0 0c,

½Nt� ¼ ½0 0 1� x 0 0 0 x 0�; ½Nb� ¼ ½0 0 0 1� x 0 0 0 x�.

The above expressions use a reduced coordinate: x ¼ x=Le.
From the kinematical relationships between the top face sheet and the bottom face sheet, it is

easy to derive the following relations [38]:

uc ¼
ut þ ub

2
þ
ðht � hbÞ

4

qw

qx
,

(e)
iw

)(e
jw

(e)
iθ

)(e
jθ

(e)
tiu

)(e
tju

(e)
biu

)(e
bjuLe

Core layer ji

b 

hb

hc

ht

Fig. 2. A sandwich beam element.
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g ¼
ut � ub

hc

þ
qw

qx

ht þ hb þ 2hc

2hc

� �
. (3)

g and uc can be expressed in the nodal displacement as follows:

uc ¼ ½Nuc�fU
ðeÞg; g ¼ ½Ngc�fU

ðeÞg, (4)

where

½Nuc� ¼
1

2
ð½Nt� þ ½Nb�Þ þ

ht � hb

4
½Nw�

0,

½Ngc� ¼
1

hc

�
6h�

Le

xþ
6h�

Le

x2 h�ð1� 4xþ 3x2Þ 1� x x� 1
6h�

Le

x�
6h�

Le

x2 h�ð�2xþ 3x2Þ x� x
� �

,

h� ¼ ðht � hbÞ=4.

The potential energy and the kinetic energy of the sandwich beam can be written as follows:

Up ¼
1

2
EtAt

Z Le

0

ðu0tÞ
2 dxþ

1

2
EbAb

Z Le

0

ðu0bÞ
2 dxþ

1

2
KspGcAc

Z Le

0

g2 dx

þ
1

2
ðEtIt þ EbIbÞ

Z Le

0

ðw00Þ2 dx, ð5Þ

Uk ¼
1

2
rtAt

Z Le

0

_u2t dxþ
1

2
rbAb

Z Le

0

_u2
b dxþ

1

2
rcAc

Z Le

0

_u2
c dx

þ
1

2
ðrtAt þ rbAb þ rcAcÞ

Z Le

0

_w2 dx. ð6Þ

In the above equation (5), the shape factor Ksp is also called the shear correction factor. In most
papers about sandwich beams such as Refs. [39,40], Ksp is ignored without adequate explanation.
In Ref. [41], Ksp is introduced, but the origin of the used value of Ksp in the text is not clear. In
Ref. [42], six different methods of evaluation for Ksp are compared. Unlike the common used
value of Ksp ¼ 5=6 for homogeneous cross-section, Ksp ¼ 1 is recommended in Ref. [42] for
sandwich beams. Hence the recommended Ksp ¼ 1 is used in Eq. (5).
The free vibration equation of the sandwich element can be derived by using the principles of

virtual work. The dynamic equation of the whole sandwich beam can be obtained through
standard finite element assembling procedures.
2.2. Initial values

In inverse methods, good initial values can limit the necessary number of iteration cycles. This
not only saves computer time during the identification process, but it also avoids evolving into a
local minimum instead of the desired global minimum. By using assumption (7) in Section 2.1
(Ef ¼ Et ¼ Eb), initial values for the material properties in sandwich beams with a free–free
boundary condition can be obtained through three steps.
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Step 1: the sandwich beam is regarded as a Timoshenko Beam. The equivalent Yong’s modulus
Eeq and equivalent shear modulus Geq can be calculated from the resonance frequencies by using
the following formulas [18]:

Eeq ¼ An þ Bn �
Eeq

Geq
(7.1)

with

An ¼ EBE 1þ an
t2

L2

� �
, (7.2)

Bn ¼ EBE bn

t2

L2
� cn

t4

L4

� �
, (7.3)

EBE ¼
48rp2L4

t2m4
n

f 2
n exp. (7.4)

Table 1 lists the constants in the above formulas for the sixth first flexural mode shape numbers.
Formula (7) is used to obtain Young’s modulus Eeq and the transverse shear modulus Geq.

Formula (7) must be evaluated for at least two different sets of values.
Step 2: the Young’s modulus Ef of the two identical face sheets and the elastic shear modulus

Gc of the core can be calculated approximately from the obtained equivalent Young’s modulus
Eeq and equivalent shear modulus Geq by the following formulas [3]:

ðEIÞeq ¼
Ef bh3f

6
þ

Ef bhf ðhc þ hf Þ
2

2
, (8.1)

ðGAÞeq ¼ Gc � b � hc. (8.2)

ðEIÞeq is the equivalent bending stiffness, ðAGÞeq is the equivalent shear stiffness. Both can easily
be calculated from the equivalent Young’s modulus Eeq and equivalent shear modulus Geq

obtained from (7). Formula (8) is more suitable for sandwich beams with relatively thin, stiff face
sheets and relatively soft, thick core.
Table 1

Constants of free–free Timoshenko beam formulas

Mode No. n mn an bn cn

1 4.7300 4.12 1.23 4.20

2 7.8532 9.08 4.60 32.0

3 10.996 15.6 9.89 122

4 14.137 23.7 17.2 333

5 17.279 33.5 26.4 746

6 20.420 45.0 37.6 1449



ARTICLE IN PRESS

Y. Shi et al. / Journal of Sound and Vibration 290 (2006) 1234–1255 1241
Step 3: In sandwich structures, the damping property is usually an important parameter. There
are several definitions of damping. Among them, the specific damping capacity c, expressed as the
ratio of energy dissipation per loading cycle to the maximum storage energy during the cycle; the
logarithmic decrement d measured in free vibration decay experiment; the modal loss factor Zmod,
determined by the half-power bandwidth method or 3 dB method; the material loss factor Zmat,
defined as the ratio of the imaginary to the real part of the material complex modulus. For low
levels of damping (Zmodo0:2), their inter relationship is given by

c ¼ 2d ¼ 2pZmod ¼ 2pZmat ¼ 2p
Do3 dB

on

¼ 2p tan f,

where f is the phase angle between cyclic stress and strain, on is the resonance peak value, Do3 dB

is determined from the half-power point down from the resonant peak value [43].
If it is required to identify the material loss factor Zc of the core, a simplified Ross–Kervin–

Ungar (RKU) equation [8] can be used to estimate its initial value according to the
|Objective|< ε

Start

Initial Value, fiexp ,η iexp and ε

Calculate fical,η ical from FEM

No 

Calculate Ef , Gc, ηc  from

NM-Simplex method

No 

Yes

Write “not convergent”

Write results 

End 

Exceed Maxmum iteration

number

Yes

Fig. 3. Flowchart of the whole identification process.
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following formulas:

Zc ¼
AZn

A� B� 2ðA� BÞ2 � 2ðAZnÞ
2
, (9)

where

A ¼
wn

wnf

� �2

2þ
rc

rf

:
hc

hf

 !
B

2

� �
; B ¼

1

6ð1þ hc=hf Þ
2
.

wn is the measured nth circular frequency of sandwich beam. wnf is the nth circular frequency of
the face sheet. Since the Young’s modulus Ef of the two identical face sheets has already identified
from Eq. (8) in Step 2, for a free–free boundary condition, wnf can be easily estimated from an
equation similar to Eq. (7.4). Zn is the nth modal loss factor determined by half-power bandwidth
method or 3 dB method.
2.3. The optimization process

Optimization methods can minimize the output residual in an inverse method by the selection
of an adequate scalar objective function that contains the residual as a variable. The objective
function selected in this paper can be written as

Objective function ¼
XN

i¼1

1�
f ical

f i exp

 !2

(10)

for sandwich beams without considering the loss factor Zc.

Objective function ¼
XN

i¼1

1�
f ical

f i exp

 !2

þ
XN

i¼1

1�
Zical

Zi exp

 !2

(11)

for sandwich beams including the loss factor Zc.
A direct search method called the NM simplex (NM SPX) optimization method [44] is selected

in this paper. The flowchart of the whole identification process is shown in Fig. 3.
3. Error estimation

Consider a numerical model of a test specimen with a relationship between n frequencies, r

target parameters (such as Young’s moduli, shear moduli) and s test specimen parameters (such as
lengths, thicknesses, widths and masses). At given target and test specimen parameter values,
finite uncertainty intervals of frequency values due to finite target and test specimen uncertainty
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intervals can be approximated as

Df 1

Df 2

..

.

Df n

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

qf 1

qp1

qf 1

qp2

� � �
qf 1

qpr

qf 1

qg1

qf 1

qg2
� � �

qf 1

qgs

qf 2

qp1

qf 2

qp2

� � �
qf 2

qpr

qf 2

qg1

qf 2

qg2
� � �

qf 2

qgs

..

. ..
.
� � � ..

. ..
. ..

.
� � � ..

.

qf n

qp1

qf n

qp2

� � �
qf n

qpr

qf n

qg1

qf n

qg2
� � �

qf n

qgs

2
666666666664

3
777777777775

Dp1

Dp2

..

.

Dpr

Dg1

Dg2

..

.

Dgs

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

. (12)

The input parameters for the inverse method are the n frequencies and s test specimen parameters.
The relative uncertainties Dp on the r target parameters due to the uncertainties on the nþ s input
parameters can be computed as [45,46]

Dp ¼ sþp �sþp :sg

h i Df

Dg

( )
, (13)

where

sþp is the pseudo-inverse of sp

and

sp ¼

qf 1

qp1

qf 1

qp2

� � �
qf 1

qpr

qf 2

qp1

qf 2

qp2

� � �
qf 2

qpr

..

. ..
. ..

. ..
.

qf n

qp1

qf n

qp2

� � �
qf n

qpr

2
666666666664

3
777777777775
; sg ¼

qf 1

qg1

qf 1

qg2
� � �

qf 1

qgs

qf 2

qg1

qf 2

qg2
� � �

qf 2

qgs

..

. ..
. ..

. ..
.

qf n

qg1

qf n

qg2
� � �

qf n

qgs

2
666666666664

3
777777777775
. (14)

The uncertainty intervals of the input parameters can be stored in a global column fDmg ¼ Df
Dg

n o
.

The relative contribution of the uncertainty of the jth input parameter on the uncertainty of the
ith identified material parameter can be computed [46–48]:

ri ¼
jsijj:DmjPnþs
j¼1 jsijj:Dmj

; i ¼ 1; 2; . . . ; r (15)

with

½s� ¼ sþp �sþp :sg

j k
. (16)
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Relation (15) satisfies the consistency condition [45]:

Xnþs

j¼1

rij ¼ 1; i ¼ 1; 2; . . . ; r. (17)
4. Case studies

An accurate mathematic model is a prerequisite of material parameters identification by inverse
methods. This section therefore will compare first the finite element model of the sandwich beams
built in Section 2 with models from literature. Three different test cases will be presented. Next,
the identification procedure results will be verified with experimental results and numerical
simulations. Finally, an error estimation example will be given.

4.1. Verification of the sandwich finite element model

Test case 1: In this test case, the damping of neither face sheets nor the core layer is considered.
A sandwich beam with face sheets made from glass fibre reinforced plastics (GFRP) and a core

layer made from PVC is studied in detail in Ref. [6]. The resonance frequencies are derived from
wave propagation equations. The results from the proposed sandwich finite element model are
compared with those from wave propagation model. The properties of the sandwich beam are
listed in Table 2. The boundary condition is free–free. The calculated resonance frequencies both
from Ref. [6] and from current study, the measured frequencies, and the corresponding relative
errors are listed in Table 3.
From Table 3, the following conclusion can be drawn: (1) by comparing the current results with

those calculated in Ref. [6] (see the fifth column in Table 3), it is clear that both the current
sandwich finite element model and the wave propagation model are very close to each other; (2)
by comparing the calculated results with experimental results in Ref. [6] (see the sixth column in
Table 3), it can be seen that the results both from the current calculation and from the calculation
in Ref. [6] have a non-neglectable difference as compared with the experimental results. This
discrepancy results from the inaccurate input material properties in Table 2. In Ref. [6], the E

modulus of the GFRP face sheet and G modulus of the PVC core are measured as follows:
(1)
Tab

Pro

GFR

PVC
First, the GFRP face sheet is measured separately. The face sheet is suspended by using very
soft cord to simulate the free–free boundary condition. The E modulus is calculated from the
measured frequencies using Euler’s formula of a free–free beam vibration.
le 2

perties of sandwich beam

Density E modulus Thickness Length Width Poisson’s

ðkg=m3Þ (Pa) (m) (m) (m) ratio

P 1580 9.80e9 2.5e-3 1.65 116e-3 0.3

101 9.40e7 50e-3 1.65 116e-3 0.3
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Table 3

Resonance frequencies comparison

Frequency Current model Results in Ref. [6] Measured Relative error with Relative error with

No. (Hz) (Hz) (Hz) Ref. [6] (%) measurement in Ref. [6] (%)

1 64.189 65 62 �1.247 3.531

2 161.532 162 161 �0.289 0.330

3 282.588 283 288 �0.145 �1.879

4 413.240 412 428 0.301 �3.449

5 546.822 545 578 0.334 �5.394

Y. Shi et al. / Journal of Sound and Vibration 290 (2006) 1234–1255 1245
(2)
 Secondly, a beam made with only the PVC core is measured separately. The resonance
frequencies are measured similarly as in (1). The E modulus is calculated again from the
resonance frequencies using Euler’s formula. By using the formula of isotropic material ðG ¼
E=2ð1þ mÞÞ and assuming a value of Poisson’s ratio equal to 0.3, the shear modulus G is
calculated.
It is clear that the input E modulus of the GFRP face sheets and the G modulus of the PVC
core are inaccurate. Several influence factors are missing during the course of deriving the E

modulus and the G modulus: (1) for the thick, soft PVC core, Euler’s beam free–free vibration
formula is not accurate because of the influence of the transverse shear modulus (2). The material
properties of the face sheets and the core are different before and after their assemblage into the
sandwich beam. The influence of the adhesive layer between the face sheets and the core in
sandwich beams cannot be ignored. This is exactly the reason why a more accurate, convenient
way is needed to identify the material properties of the sandwich beam instead of measuring them
separately (3). The shear modulus of the core is calculated from an assumed Poisson’s ratio of 0.3.
This results in an inaccurate shear modulus.

Test case 2: In this test case, only the damping of the core is considered. The test case is used to
show that the results from different models taken from literature are comparable with the
proposed finite element model.
The second case has been extensively studied in various analyses and experiments by several

different researchers using different methods. Kerven first studied infinite length beam by using an
effective stiffness method and the classical fourth-order theory of elastic beams in Ref. [49]. Mead
and Markus [50] derived a sixth-order theory for finite length beam. This problem was also
studied by Johnson, Kienholz and Rogers (JKR) [51] with finite element method and modal strain
energy (MSE) method. Recently Macé [39] studied this problem by his proposed finite element
method and Fasana and Marchesiello [40] analysed it by Rayleigh–Ritz method.
The material properties of the studied cantilever beam are listed in Table 4. The calculated

frequencies and modal loss factors are listed in Tables 5–10.
It can be seen that the results from the proposed method can predict the resonance frequencies

and modal loss factors and that the results are in good agreement with those from literature.
Test case 3: In this case, the damping of both the face sheets and the core are considered.
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Table 4

The material properties of the studied cantilever sandwich beam

Thickness Length Width Density E G Poisson’s Loss

(m) (m) (m) ðKg=m3Þ (Pa) (Pa) ratio factor

Face sheet 1.52e-3 0.1778 1.27e-2 2.8e3 6.9e10 — 0.3 0

Core 0.127e-3 0.1778 1.27e-2 968.3 — 0.69e6 — 0.1, 0.2, 0.3, 0.6, 1.0, 1.5

Table 5

Results comparison of the cantilever sandwich beam with core loss factor 0.1

Mode number 1 2 3 4 5

Mead and Markus f n (Hz) 64.075 296.41 743.7 1393.9 2261.09

[50] Zn (%) 2.815 2.424 1.54 0.889 0.573

JKR f n (Hz) 64.2 297.0 747.2 1408.3 2304.0

[51] Zn (%) 2.817 2.425 1.534 0.878 0.559

Zc ¼ 0:1 Macé f n (Hz) 60.9 288.8 732.9 1381.4 2246.6

[39] Zn (%) 2.646 2.173 1.328 0.742 0.463

Fasana and Marchesiello f n (Hz) 63.35 292.1 732.8 1373 —

[40] Zn (%) 2.86 2.43 1.54 0.89 —

Proposed f n (Hz) 63.61 294.20 738.02 1383.06 2243.21

model Zn (%) 2.81 2.43 1.54 0.89 0.574

Table 6

Results comparison of the cantilever sandwich beam with core loss factor 0.2

Mode number 1 2 3 4 5

Mead and Markus f n (Hz) 64.21 296.64 743.85 1394.0 2261.15

[50] Zn (%) 5.56 4.83 3.08 1.776 1.144

JKR f n (Hz) 64.4 297.6 748.0 1409.0 2304.0

[51] Zn (%) 5.564 4.832 3.066 1.756 1.118

Zc ¼ 0:2 Macé f n (Hz) 61.2 289.0 733.4 1381.7 2246.9

[39] Zn (%) 5.292 4.346 2.656 1.484 0.926

Fasana and Marchesiello f n (Hz) — — — — —

[40] Zn (%) — — — — —

Proposed f n (Hz) 63.74 294.43 738.18 1383.14 2243.27

model Zn (%) 5.56 4.83 3.09 1.78 1.14
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The third case was studied by both Macé [39] and Fasana and Marchesiello [40]. It is a free–free
sandwich beam with GFRP face sheets and a core made of vibrachoc VIB12 at 20 1C. The
material properties are listed in Table 11. In this case, the loss factor of both the GFRP face sheet
and core is included.
The calculated modal frequencies and modal loss factors are listed in Table 12.
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Table 7

Results comparison of the cantilever sandwich beam with core loss factor 0.3

Mode number 1 2 3 4 5

Mead and Markus f n (Hz) 64.43 297.01 744.1 1394.0 2261.24

[50] Zn (%) 8.169 7.197 4.614 2.664 1.716

JKR f n (Hz) 64.7 298.0 748.2 1409.5 2305.0

[51] Zn (%) 8.175 7.203 4.593 2.634 1.68

Zc ¼ 0:3 Macé f n (Hz) 61.5 289.8 734.0 1382.3 2247.2

[39] Zn (%) 7.938 6.519 3.984 2.226 1.389

Fasana and Marchesiello f n (Hz) — — — — —

[40] Zn (%) — — — — —

Proposed f n (Hz) 63.957 294.796 738.432 1383.283 2243.357

model Zn (%) 8.165 7.204 4.622 2.670 1.720

Table 8

Results comparison of the cantilever sandwich beam with core loss factor 0.6

Mode number 1 2 3 4 5

Mead and Markus f n (Hz) 65.48 298.9 745.48 1394.9 2261.7

[50] Zn (%) 14.76 13.938 9.168 5.316 3.432

JKR f n (Hz) 65.5 301.0 753.0 1414.0 2310.0

[51] Zn (%) 14.772 13.956 9.126 5.256 3.36

Zc ¼ 0:6 Macé f n (Hz) 62.7 292.4 737.4 1385.2 2249.7

[39] Zn (%) 15.876 13.038 7.968 4.452 2.778

Fasana and Marchesiello f n (Hz) — — — — —

[40] Zn (%) — — — — —

Proposed f n (Hz) 65.005 296.675 739.793 1384.016 2243.847

model Zn (%) 14.750 13.949 9.178 5.326 3.437

Table 9

Results comparison of the cantilever sandwich beam with core loss factor 1.0

Mode number 1 2 3 4 5

Mead and Markus f n (Hz) 67.41 302.8 748.6 1396.6 2262.88

[50] Zn (%) 20.22 21.77 15.02 8.81 5.7

JKR f n (Hz) 67.4 307.0 762.0 1422.0 2316.0

[51] Zn (%) 20.19 21.8 15 8.73 5.6

Zc ¼ 1:0 Macé f n (Hz) 64.3 296.7 744.3 1391.0 2254.8

[39] Zn (%) 26.46 21.72 13.28 7.42 4.63

Fasana and Marchesiello f n (Hz) — — — — —

[40] Zn (%) — — — — —

Proposed f n (Hz) 66.913 300.533 742.92 1385.684 2244.98

model Zn (%) 20.202 21.72 15.023 8.828 5.714
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Table 10

Results comparison of the cantilever sandwich beam with core loss factor 1.5

Mode number 1 2 3 4 5

Mead and Markus f n (Hz) 69.88 308.85 754.0 1399.7 2265.0

[50] Zn (%) 22.956 29.625 21.9 13.095 8.52

JKR f n (Hz) 70.0 315.0 774.0 1433.0 2328.0

[51] Zn (%) 22.83 29.28 21.855 13.02 8.385

Zc ¼ 1:5 Macé f n (Hz) 64.4 303.5 755.3 1400.6 2263.8

[39] Zc (%) 26.46 32.58 19.92 10.86 6.945

Fasana and Marchesiello f n (Hz) 69.13 304.3 743.4 1378 —

[40] Zn (%) 23.4 29.6 21.9 13.1 —

Proposed f n (Hz) 69.366 306.555 748.725 1388.773 2247.120

model Zn (%) 22.938 29.651 21.931 13.122 8.534

Table 11

The material properties of the free–free sandwich beam

Length Width Thickness Density E G Loss

(m) (m) (m) ðKg=m3Þ (Pa) (Pa) factor

GFRP 0.6 3e-2 10.2e-3 1890 2.4e10 — 0.005

VIB12 Core 0.6 3e-2 1e-3 1100 — 2.2e7 0.73

Table 12

Modal parameters of a free–free sandwich beam

1 2 3

f 1 (Hz) Z1 (%) f 2 (Hz) Z2 (%) f 3 (Hz) Z3 (%)

RKU [8] approximation — 12 — 19 — 22

Macé [39] 193 8.8 493 17.5 900 22.3

Macé experiments [39] 202 8.9 512 18 941 24.7

Fasana and Marchesiello [40] 205 7.4 516 15.7 938 20.8

Proposed 209.51 6.19 516.73 15.76 897.05 21.49
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From the above table, it can be seen that the results from the proposed sandwich finite element
model are in good agreement with results from literature. The discrepancy with the experimental
values results probably from inaccurate input of material parameters, especially for the shear
modulus and loss factor of the core.

4.2. Verification of the material parameters identification procedure

In this paragraph, the material parameters identification procedure is verified by experiments
and numerical examples.
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Test case 1: The sandwich beam with GFRP face sheets and PVC core studied in case 1 in
Section 4.1 is used to validate the material parameters (Elastic Young’s modulus of face sheets Ef

and elastic shear modulus Gc) identification from the experimental measured first five resonance
frequencies by the proposed procedure in Section 2.
The proposed sandwich model used the geometrical parameters and densities in Table 2 and the

measured first five frequencies in Table 3. Next, according to steps 1 and 2 in Section 2.2, the
initial values and the identified values are computed. The results together with the values from
Ref. [6] are listed in Table 13.
The measured first 10 frequencies (taken from Ref. [6]) are compared with predicted frequencies

using the final identified parameters and the values from Ref. [6] in the proposed finite element
model. The results and their relative errors are listed in Table 14.
From the above results, the following conclusion can be drawn: (1) comparing the relative

errors in columns 3 (relative errors between columns 1 and 2) and 5 (relative errors between
columns 1 and 4), it is clear that the frequencies calculated from identified material parameters
match much better to the measured frequencies than calculated frequencies from the material
parameters from Ref. [6]; (2) only the first five frequencies are used to identify Ef and Gc, the
higher frequencies (from sixth to tenth frequency) can be well predicted.
Table 13

Identified results

Initial values Final values Values in Ref. [6]

Ef (Pa) 9.900e9 9.216e9 9.8e9

Gc (Pa) 5.089e7 4.494e7 3.615e7

Table 14

The measured first 10 frequencies, the calculated frequencies by using the final identified parameters, and their relative

errors

Measured Calculated frequencies Relative errors Calculated frequencies Relative errors

frequencies in Ef ¼ 9:216e9Pa with measured Ef ¼ 9:8e9Pa with measured

Ref. [6] Gc ¼ 4:494e7Pa frequencies Gc ¼ 3:615e7Pa frequencies

(Hz) (Hz) (%) (Hz) (%)

62 62.79 1.2707 64.189 3.530

161 161.02 0.0097 161.532 0.330

288 287.41 0.2045 282.588 1.879

428 427.92 0.0185 413.240 3.449

578 571.72 1.0868 546.822 5.394

726 722.93 0.4222 680.348 6.288

876 871.19 0.5486 812.789 7.216

1026 1018.48 0.7329 943.869 8.005

1172 1144.00 2.3890 1073.654 8.391

1321 1309.38 0.8798 1202.297 8.986
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The influence of other initial values on the finally obtained values was also tested. The results
are listed in Table 15.
During the different identification processes, only the initial values are different, others such as

the convergence criteria remain the same. The identified results are identical by using different
initial values.
It can be concluded that: (1) comparing the initial and final identified material parameters in

Table 13, it is clear that the proposed procedure for initial value produces good initial values; (2)
by changing the initial values (initial values 2 in Table 15), the identified material parameters are
identical. The identified procedure is thus stable.

Test case 2: The cantilever beam studied in case 2 in Section 4.1 is also used to verify the
proposed identification procedure. The geometric parameters and densities of the cantilever beam
are listed in Table 4. The calculated modal frequencies and modal loss factors are used as ‘‘virtual
experimental values’’ (VEV). For example, for case Zc ¼ 0:1, the used VEV calculated by the
proposed finite element model are listed in Table 5. The initial values, the identified values and the
theoretical values are listed in Table 16. The VEV and the calculated values by using the identified
values are listed in Table 17.
Other initial values, for example, E of the face sheets as 7.5e10 Pa, G of the core as 7.5e5 and Z

loss factor of the core as 0.8, give the same identified parameters.
From the above simulation, it is shown that (1) the loss factors of the core can also be identified

from the measured modal loss factors; (2) even a rough approximate initial value can be used to
identify the desired material parameters of the sandwich beams with the proposed procedure.

4.3. Error estimation

The sandwich beam with GFRP face sheets and PVC core studied in case 1 in Sections 4.1 and
4.2 is used in this paragraph to validate the error estimation procedure presented in Section 3.
Generally speaking, a typical experimental set-up to measure vibration resonance frequencies

includes: (1) an electronic vernier calliper to measure the size of the specimen; (2) an electronic
balance to measure the weight; (3) a loud speaker to excite the specimen in an non-contact way;
Table 15

Identified results with different initial values

Initial values 1 Identified values 1 Initial values 2 Identified values 2

Ef (Pa) 9.9e9 9.216e9 2.46e9 9.216e9

Gc (Pa) 5.1e7 4.494e9 5.56e7 4.494e9

Table 16

The initial values, the identified values and the theoretical values

Initial values Identified values Theoretical values

E of the face sheets (Pa) 6.4e10 6.899999e10 6.9e10

G of the core (Pa) 5.8e5 6.899999e5 6.9e5

Z Loss factor of the core 0.13 1.00000e-1 0.1
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Table 18

The values and the uncertainty on the input parameters

Value Uncertainty interval Absolute error

f 1 (Hz) 62 61.9–62.1 �0:1
f 2 (Hz) 161 160.9–161.1 �0:1
f 3 (Hz) 288 287.9–288.1 �0:1
f 4 (Hz) 428 427.5–428.5 �0:5
f 5 (Hz) 578 577.5–578.5 �0:5
Length (mm) 1650 1649.99–1650.01 �0:01
Width (mm) 116 115.99–116.01 �0:01
Thickness of GFRP (mm) 2.5 2.49–2.51 �0:01
Thickness of PVC (mm) 50 49.99–50.01 �0:01
Mass of GFRP (g) 0.75603 0.74603–0.76603 �0:01
Mass of PVC (g) 0.96657 0.95657–0.97657 �0:01

Table 17

The virtual frequencies, damping loss factors and computed values using the identified material parameters

No. VEV Calculated by using identified values Relative errors

f n 1 63.60677073 63.6067695 1.93144E-08

(Hz) 2 294.2024862 294.2024715 5.00096E-08

3 738.0234346 738.0234074 3.68604E-08

4 1383.061335 1383.061289 3.29898E-08

5 2243.210028 2243.209971 2.53116E-08

6 3316.753505 3316.753421 2.53E-08

Zn 1 2.8131992 2.8131994 6.90588E-08

(%) 2 2.4261244 2.4261247 1.00862E-07

3 1.544055 1.5440551 1.51117E-08

4 0.8908146 0.8908145 1.48109E-07

5 0.5736861 0.5736861 1.09972E-09

6 0.3908544 0.3908544 8.45715E-08
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(4) a laser vibrometer to pick up signals in an non-contact way; (5) a modal analysis software
package; (6) soft cords used to suspend the specimen (to simulate the free–free boundary
condition). The values and proposed uncertainties on the input parameters are listed in Table 18.
It can be remarked that the selected error intervals in Table 18 are taken very small. This is only

allowed if the test specimen has good homogeneous material properties and if it is machined with
proper care. Also, the non-contact excitation and the non-contact measurement on the freely
suspended glass beam justify the assumed small error intervals on the measured frequencies.
Based on these assumed intervals and the computed sensitivities, it is possible to estimate
uncertainty intervals on the obtained material properties by formula (13).
The computed uncertainty intervals for the identified material properties of sandwich beams are

listed in Table 19.
According to Eq. (15) in Section 3, the relative contributions of the computed uncertainty of the

input parameters are listed in Table 20.
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Table 19

The uncertainty interval for the identified material property

Value Uncertainty interval Abs. error Rel. error (%)

Ef (GPa) 9.216 9.18305–9.24895 0.03295 0.3575

Gc (Mpa) 44.94 44.5045–45.3755 0.4355 0.9691

Table 20

The relative contributions of the uncertainty of the input parameters

f 1 (%) f 2 (%) f 3 (%) f 4 (%) f 5 (%) Length

(%)

Width (%) Thickness of

GFRP (%)

Thickness

of core (%)

Mass of

GFRP (%)

Mass of

core (%)

Ef 0.883 1.456 1.001 3.585 46.564 0.355 0.000003 44.147 1.671 0.226 0.113

Gc 0.337 0.518 3.661 46.151 26.250 0.302 0.00002 16.007 6.648 0.085 0.040
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From Table 20, the following conclusions can be drawn: (1) the accuracy of the thickness of the
face sheets is crucial to the identified Young’s modulus; (2) both the thickness of the face sheets
and the thickness of the core are important to the identified shear modulus; (3) the higher
frequencies play more important roles in the identified results; and (4) the width of the tested
sandwich beam has no influence on the final results.
5. Conclusion

In this paper, a finite element model for sandwich beams is developed. An inverse procedure is
proposed to identify the material parameters from measured resonance frequencies. It is shown
that the Young’s modulus of the face sheets, and the elastic shear modulus of the core can be
identified by matching the calculated resonance frequencies with the measured resonance
frequencies. If the modal loss factors are available, it is also possible to identify the constant loss
factor of the core. For free–free sandwich beams with relatively thin, stiff face sheets and relatively
thick, soft core, the formulas in Section 2.2 can give good initial values. Compared with a static
testing method such as ASTM method [15,16], the proposed method is cheap, convenient and
accurate. Furthermore, the proposed inverse method used the complete sandwich beam and is
hence non-destructive.
The error estimation results show that the accuracy of the thickness of the face sheets is crucial

to the identified Young’s modulus, both the thickness of the face sheets and the thickness of the
core are important to the identified shear modulus. The higher frequencies play a more important
role in the identified results as the lower frequencies.
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